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Multi-Modality Imaging and Modeling 
of Dynamic Brain Function

J.S. George, D.M. Schmidt, 
C.C. Wood, G. Kenyon (P-21), 
B.J. Travis (EES-2)The past few decades have witnessed extraordinary progress in the 

development of techniques for structural and functional imaging of 
the human brain. MRI is the premier technique for imaging the soft 

tissue anatomy of the human brain, but it has signifi cant limitations for 
defi ning the geometry of the skull, which computerized tomography does 
very well. Functional MRI provides detailed pictures of spatial patterns of neural 
activation based on associated hemodynamic changes but does not capture 
the characteristic temporal dynamics of neurophysiological activation. MEG 
and EEG provide excellent temporal resolution of neural population dynamics 
but are limited in spatial resolution by the ambiguity and ill-posed nature of 
the source reconstruction problem. Electrophysiology, microanatomy, optical 
imaging, and other methods each provide important though limited insight 
into neural function and functional organization. 
Although the mix and relative importance of imaging 
technologies will evolve, the need to integrate 
information from multiple methods will remain.

Dynamic neuroimaging techniques allow 
measurement of neural population responses 
that refl ect integrated activity of the underlying 
networks. Evolving analytical strategies allow 
increasingly reliable source localization and 
time-course estimation based on MEG and EEG, 
incorporating anatomy from MRI.1,2 These tools 
allow us to observe the dynamic responses of neural 
populations; but to understand the nature and 
basis of network function, it is necessary to build 
models. Computational models of the physical 
systems and of the physiological processes that 
give rise to observable responses are essential to 
connect experimental measures with models of the 
distribution and dynamics of neural activation. 
Forward models of fi eld or potential distributions at 
the head surface associated with primary currents 
within the brain are the basis for inverse procedures 
for MEG and EEG that attempt to estimate the 

Figure 1. Forward calculations by the FDM. (a) Infl uence scheme showing resistive 
links between neighboring nodes. (b) Segmented MRI used to set conductivities for 
simulation. (c) Skull segmented from MRI before post processing. (d) Surface/cut 
plane rendering of potentials from Figure 1(c). (e and f) Two slices through computed 
potential volume, showing current leakage along the optic nerve penetration. 
(g) Computed conductivity tensors based on DT-MRI. Note the anisotropy of 
conductivity corresponding to white matter tracts. 

Figure 1. Forward calculations by the FDM. (a) Infl uence scheme showing resistive 
links between neighboring nodes. (b) Segmented MRI used to set conductivities for 
simulation. (c) Skull segmented from MRI before post processing. (d) Surface/cut 
plane rendering of potentials from Figure 1(c). (e and f) Two slices through computed 
potential volume, showing current leakage along the optic nerve penetration. 
(g) Computed conductivity tensors based on DT-MRI. Note the anisotropy of 
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number, location, extent, and time courses of 
regions of cortical activation. Simulation tools that 
capture the three-dimensional architecture and 
functional dynamics of neurons and of extended 
networks allow us to predict interesting dynamic 
responses and to optimize network models that 
account for experimental observations. 

Advanced Forward Models 

Source localization based on MEG and EEG 
has traditionally employed analytical or semi-
analytical forward calculations based on simple 
geometries such as spherical shells, assuming 
that errors introduced by the forward calculation 
are small relative to the uncertainty associated 
with the inverse estimation procedure. For some 
applications, boundary element methods have been 
used, incorporating the gross geometry of the major 
conductivity boundaries of the head and employing 
a small number of tissue classes of simplified 
geometry.1 However, as inverse methods get better, 
the simplifying assumptions inherent in these 
methods are less tenable. 

Finite difference calculation. We have adopted 
an alternative strategy based on a finite difference 
method (FDM) that can incorporate more 
detailed geometry based on MRI and estimates 
of volume conductivity provided by emerging 
imaging methods, including diffusion tensor 
(DT) MRI, current density MRI, and electrical 
impedance tomography. FDM does not require 
construction of a specialized computational mesh 
or explicit identification and topological checking 
of boundaries; the calculation is performed 
on a rectangular grid that is the most natural 
representation of the MRI data used to define 
the geometry. Various techniques improve the 
performance of the FDM on a rectangular grid, 
e.g., adaptive mesh refinement to control error in 
regions with high field variation and formulations 
that reduce errors caused by the staircase 
approximation of a curved boundary. 

Because the FDM allows easy manipulation of 
geometrical details of the volume conductor, we 
have examined the effects of skull penetrations 
on observed field distributions. These studies 
demonstrated significant effects of the optic 
nerve and ear canal on both the magnitude and 
distribution of the potential field compared to 
a model that did not incorporate these shunts 
(Figure 1). These effects might significantly 
influence localization of sources in frontal or 

temporal lobes. We anticipate that it will be 
important to account for surgical penetrations of 
the cranium for neurosurgical patients in whom 
source localization studies are undertaken.

Conductivity estimation. Although our 
computational formalism handles anisotropic 
conductivity, in the past such capability was 
of little consequence because there were no 
methods for the noninvasive estimation of tissue 
conductivity or anisotropy. However, our recent 
work has demonstrated the feasibility of estimating 
anisotropic conductivity based on DT-MRI 
[Figure 1(g)]. Tuch3 has shown that DT-MRI has 
a well-defined relationship to tissue conductivity. 
Diffusion and conductivity tensors share the 
same eigenvectors as a result of the common 
microgeometry. The relationship between the 
eigenvalues for diffusion and conductivity can 
be derived using an “effective medium” theory; 
we conclude that conductivity and diffusion 
are strongly and linearly related. Advances in 
measurement technology and analytical procedures 
may allow estimation of head conductivity using 
electrical impedance tomography coupled with 
models of tissue geometry from MRI.

The Neural Electromagnetic Inverse 
Problem 

To estimate the dynamics of neural systems, an 
adequate model of the spatial distribution of 
the underlying sources is needed. Building this 
source model is the principal business of inverse 
procedures. Over the past decade, we and others 
have made significant advances in the development 
and implementation of inverse procedures for 
MEG and EEG. Increasingly, these methods employ 
information derived from other imaging modalities 
such as MRI to inform or constrain source 
localization procedures. 

Bayesian Inference. We have previously described 
a technique for Bayesian Inference that addresses 
the fundamental ambiguity of the inverse problem 
and the complex error surface associated with 
the model parameter space by explicitly sampling 
the posterior probability distribution.4 A Markov 
Chain Monte Carlo (MCMC) technique is used 
to conduct a series of numerical experiments and 
to see which stochastic solutions best account for 
the data (Figure 2). Source models accommodate 
an extended region of activation within a 
bounding volume defined by a few parameters. 
Because Bayesian methods explicitly employ prior 

Figure 2. Bayesian 
Inference probability maps 
of source locations derived 
from MEG studies of visual 
responses. 
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knowledge to help solve the inverse problem, they 
provide a natural and formal method to integrate 
multiple forms of image data.  

Parametric distributed source model. In the 1999 
paper describing Bayesian Inference,4 we employed 
a parametric source model consisting of a set of 
elemental currents, each aligned orthogonal to 
the local cortical surface and all contained with a 
bounding sphere centered on some cortical voxel. 
We recently have implemented a new technique 
to defi ne the bounding volume for our activation 
model that produces regular two-dimensional 
patches across the cortex sheet. The patch is defi ned 
by a series of dilation operations (i.e., stepwise 
labeling of successive layers of contiguous voxels) 
about some seed voxel. This method produces 
source models based on patches of cortical 
activation, more consistent with our expectations, 
and allows useful constraints on the polarity of 
cortical currents.

Spatio-Temporal Bayesian Inference. Our initial 
formulation of Bayesian Inference was applied 
to single instantaneous fi eld maps. However, our 
experience has underscored the value of spatio-
temporal modeling procedures that attempt to 
fi t an extended sequence of fi eld maps across 
time with a consistent ensemble of sources. This 
strategy produces a more parsimonious model 
and exploits the strong, local correlation within 
the time domain of integrated neural population 
activity. We have developed a scheme for Spatio-
Temporal Bayesian Inference (STBI) in which each 
parametric model source has an associated time 
course. The MCMC algorithm is used to sample 
the posterior probability distribution of the time 
courses structured as vectors with an element 
corresponding to each time point of the sampled 
fi eld distributions. By this strategy, we are able to 
estimate the form and variance of the time course 
associated with each probabilistic source. 

Studies with simulated data. Figure 3 outlines 
the results of a numerical study applying STBI to 
a simulated data set. In this example, we defi ned 
three small, distributed sources. Two of the sources 
have time courses that are highly correlated—a 
condition that creates diffi culties for some spatio-
temporal methods. STBI recovered all three of the 
sources and time courses with surprising fi delity 
and with very tight confi dence intervals. In another 
study, we were able to resolve two sources separated 
by less than a centimeter near the posterior pole 

of occipital cortex on the basis of differences in 
orientation and time course. Our experience with 
simulated data suggests that much of the ambiguity 
of the MEG inverse problem is eliminated by STBI.

Coupling Experiments and Network 
Models

In spite of the advances in analytical methodology, 
noninvasive methods are unlikely to ever provide 
the spatial and temporal resolution required to 
monitor the activity of the entire ensemble of 
individual neurons in a local circuit within the 
brain. Network-modeling techniques offer the 
only viable strategy to truly understand dynamic 
measures of brain function in terms of the 
underlying synaptic and cellular dynamics and 
network connectivity. To do this properly, we 
must model at least some of the physiological 
and geometrical complexity of real neurons while 
accommodating very-large-scale networks. 

Visual system model. The mammalian visual system 
represents an ideal structure for employing cellular-
level network models to relate dynamic measures of 
neural activity to underlying neural architecture and 
population dynamics. In the retina, cellular-network 
simulations can be related to measures of activity 
provided by individual microelectrodes or 
electrode arrays or by dynamic-optical-
imaging techniques, thus providing a method 
to validate and optimize the fi rst steps of 
the system simulation. We have already used 
such models to predict and account for 
experimentally observed dynamic responses.

Large-scale, biologically realistic networks 
are modeled with the Sensory Enhanced 
Neural Simulation Engine (SENSE)—a 
general-purpose neural simulator originally 
developed by LANL investigators.
can model systems containing as few as one 
neuron up to millions of geometrically and 
physiologically realistic 
neurons. SENSE has recently 
been implemented as a 
parallel code to increase 
the size and complexity of 
tractable models. With high-
performance computers, 
extended systems such as the 
early visual pathways can 
be simulated. SENSE has 
been coupled to conjugate 

Figure 3. Source location 
and dynamics estimated 
by STBI. (a) Locations 
and (b) timecourses 
of simulated sources.  
(c) Locations and 
timecourses estimated by 
STBI. 

provided by individual microelectrodes or 
electrode arrays or by dynamic-optical-
imaging techniques, thus providing a method 
to validate and optimize the fi rst steps of 
the system simulation. We have already used 
such models to predict and account for 
experimentally observed dynamic responses.5

Large-scale, biologically realistic networks 
Sensory Enhanced 

Neural Simulation Engine (SENSE)—a 
general-purpose neural simulator originally 
developed by LANL investigators.6 SENSE 
can model systems containing as few as one 
neuron up to millions of geometrically and 
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gradient-based inverse and optimization algorithms, 
allowing data fitting or optimization as a function 
of any SENSE variable or combination of variables.

Extensions for physical modeling. SENSE captures 
the realistic three-dimensional spatial arrangements 
and connectivity patterns of neurons seen in 
neural tissue and the geometric, electrochemical, 
and synaptic properties of individual neuronal 
types. Evolution of the voltage of each neuron’s 
compartments is computed through a series of time 
steps. We have exploited this capability to compute 
the net current vector associated with activation 
of an individual neuron or population of neurons. 
Such a model can be coupled with the forward 
models previously described to predict patterns of 
response observable with MEG or EEG.

Optimization and applications of network 
models. We have begun to compare model network 
responses to functional imaging data at the cellular-
network level in order to disclose dynamic spatial 
and temporal patterns of activation that underlie 
interesting functional properties of neuronal 
networks. We continue to develop a network 
model of the retina that can be fit to experimental 
ensemble data produced with electrode arrays 
and optical imaging techniques in an effort to 
optimize neuronal and network properties. We 
have prototype models of much of the early visual 
system, and we will calibrate coupled-system 
model parameters against MEG and EEG data 
using efficient optimization algorithms to produce 
quantitative models of neural electromagnetic 
responses. This work is motivated by our role in a 
DOE-sponsored project to develop an electroneural 
prosthetic retinal implant. 

Conclusion

Computational integration of multiple techniques 
for structural and functional neuroimaging 
provides a much more powerful strategy for 
dynamic measurement of brain function than the 
use of any individual method in isolation. Network 
models allow us to generate experimentally 

testable predictions of network behavior, such as 
modulation of dynamic activity and phase-locked 
oscillations within a population that should set 
up large signals detectable by MEG or EEG. Such 
responses are of increasing theoretical interest for 
understanding the computation by the brain.  
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J.M Galbraith (P-21), 
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J. Theiler (ISR-2)

We are using computer simulations to study the dynamics of neural 
circuits. Although much is known about the inner workings of 
individual nerve cells, called neurons, the operational principles 

governing the dynamics of complex interconnected networks of neurons 
remain poorly understood. By simulating large, heterogeneous neural systems 
on modern digital computers, we hope to discover some of the operational 
principles that underlie the extraordinary processing power of biological 
computers. A better understanding of biological computation will likely 
contribute to the development of new technologies for treating neurological 
disease and may well lead to revolutionary advances in machine intelligence.  

Understanding Information Processing 
in the Vertebrate Retina

Many of our studies to date have been directed toward understanding 
information processing in the vertebrate retina. The retina has many advantages 
as a target system for developing realistic computer models. The anatomy and 
physiology of the retina have been extensively studied, especially in comparison 
with many other parts of the central nervous system; the inputs and outputs of 
the retina can be well characterized; and the retina receives no major feedback 
projections from the brain, allowing it to be treated as a stand-alone circuit. 
Furthermore, we may reasonably expect that by understanding how the retina 
talks to the brain, we will gain fundamental insight into how the different parts 
of the brain talk to each other. The following results were obtained using a 
computer model of the cat retina that has allowed 
us to investigate the function of retinal circuitry at 
a level that would be very diffi cult with currently 
available experimental techniques.1

Figure 1. Responses of model ganglion cells to small spots. 
(a) Ganglion-cell output consists of discrete, uniform 
pulses. A relatively dim spot (top) produces a small 
increase in the fi ring rate, whereas a relatively bright 
spot (bottom) produces a large transient peak in the 
fi ring rate. (b) Peri-stimulus time histograms, giving the 
change in fi ring rate versus time, are plotted for various 
spot intensities (log

2
 units). (c) Plot of peak (solid line) and 

plateau (long-short dashed line) fi ring rate as a function 
of spot intensity. Local inhibition prevents the plateau-
fi ring rate from increasing signifi cantly with stimulus 
intensity.
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to either the same or to different objects (Figure 2). 
For retinal neurons activated by the same large 
object, their spike trains were strongly correlated, or 
phase locked, by a common underlying oscillation 
at a frequency of approximately 100 Hz. Pairs 
of retinal neurons activated by different objects, 
however, were not correlated because the phases 
of their underlying oscillations varied randomly 
with respect to each other. Thus, our retinal model 
captures the interesting property of biological 
neurons—their evoked oscillations in responses 
to appropriate large visual features are stimulus-
specific and are only phase-locked between cells 
responding to the same contiguous object.

We used the retinal model to ask what information-
stimulus-specific oscillations between retinal 
neurons might convey to the brain. To investigate 
this question, we were guided by two principles. 
(1) Because it only takes us a fraction of a second to 
form a visual impression, the information conveyed 
by stimulus-specific oscillations must be available 
on short, physiologically meaningful time scales—
roughly a few hundred milliseconds. (2) Because 
the spatial convergence of retinal neurons onto 
target cells in the brain is rather low, with each 
target cell receiving input from only a few retinal 
neurons, the information conveyed by stimulus-
specific oscillations must be available locally in 
the firing activity of a similarly small number of 
neighboring cells. We thus used the retinal model to 
quantify the information conveyed about the global 
properties of a stimulus—in this case, the total size 
of the object—by a 2 × 2 neighborhood of retinal 
output neurons in a few hundred milliseconds. 
At the same time, we were fortunate to receive 
data from Wolf Singer’s laboratory recorded from 
output neurons in the cat retina under similar 
experimental circumstances. These data allowed us 
to directly test the predictions of our retinal model.  

The oscillations evoked by stimuli of various 
sizes in our retinal model were very similar to 
those measured from the cat retina (Figure 3). 
In both sets of data, small stimuli evoked little 
or no oscillatory response, whereas large stimuli 
evoked very large oscillations. Because our model is 
consistent with the known anatomy and physiology 
of the cat retina, it can provide a useful tool for 
investigating how information may be encoded by 
spike trains in the optic nerve.

Figure 2. Stimulus-selective synchronization of ganglion cells. (a) Stimulus dimensions 
relative to the receptive field centers of individual ganglion cells. (b) Cross-correlation 
histograms computed during the plateau portion of the response between spike trains 
from pairs of ganglion cells at opposite ends of the same bar or at opposing tips of 
separate bars. All ganglion-cell pairs were separated by 7 diameters (bin size: 1 ms; scale: 
100 ms, 0.5).  Also, b

1
 is the pair from the upper bar; b

2
 is the pair from separate bars; and 

b
3
 is the pair from the lower bar. Correlations were only significant for pairs from the same 

bar.

Our most intriguing finding is that retinal neurons 
can encode visual information in rather surprising 
ways. The output of a neuron cannot be classified in 
conventional electrical engineering terms as either 
analog or digital, but rather it consists of something 
altogether different—a temporal sequence of 
impulses, or spikes. Because each spike is (to a 
first approximation) identical to every other spike, 
information can only be conveyed by the temporal 
pattern of impulses. Neuroscientists continue to 
debate how information is encoded within the 
temporal structure of neural spike trains, but there 
is widespread agreement that one very important 
variable is the firing rate. Figure 1 shows an example 
of how a typical neuron in our retinal model 
encodes the local intensity, or contrast, of a small 
stimulus as a transient increase in firing rate.

About 10 years ago, Wolf Singer’s laboratory 
in Germany reported that retinal neurons use 
the relative timing of spikes to encode global 
information about visual stimuli that is not 
conveyed by their local firing rates.2,3,4 Using our 
retinal model, we were able to demonstrate a very 
similar phenomenon by examining the relative 
timing of spikes produced by neurons responding 
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Why Stimulus Size Matters

To determine the information content of both 
artificial and biological spike trains, we asked 
whether it was possible to determine if a group 
of neighboring cells was responding to a small or 
large object using their local firing activity alone 
(Figure 4). Our results are plotted as a percent 
correct, which was proportional to the fraction 
of trials on which the total size of the stimulus 
could be correctly inferred from the local firing 
activity. Random events were added to the model 
spike trains to ensure that the average number of 
spikes, or firing rate, did not change as a function 
of stimulus size. The only cue available from the 
local firing activity regarding the total size of 
the stimulus was therefore the amplitude of the 
synchronous oscillations. Our results showed that in 
300 ms (using as few as 4 spike trains from a small 
2 x 2 neighborhood), it was possible to achieve 
performance levels approaching 90% correct.

In related experiments, we showed that there was 
a tradeoff between the number of cells included 
in the analysis and the total time allowed for 
accomplishing the size discrimination task. 
Specifically, as more cells were included in the 
analysis, shorter time windows were required to 
achieve the same performance levels.  

Why, one might ask, is it important for retinal 
neurons to convey information about stimulus 
size in their local firing activity? For a possible 
answer to this question, consider the frog retina, 
where Tachibanna’s laboratory in Japan has 
shown that there are specialized neurons, called 
dimming detectors, that exhibit strong synchronous 
oscillations when activated by a large dimming 
object but not when activated by a small dimming 
object.5 Considering that from a frog’s perspective, 
a small dimming spot might be a fly or other food 
source, whereas a large dimming spot is more likely 
to be a bird or other dangerous predator, one can 
quickly appreciate why size matters.

Figure 3. Multi-unit auto-correlograms and cross-correlograms reveal size-dependent 
high-frequency oscillations. (a) Auto-correlograms computed from multi-unit spike trains 
recorded from cat retina at the center-of-square spots of increasing size (data were re-
plotted from Reference 3). Correlations are expressed as a fraction of the expected level 
due to chance. (b) Multi-unit cross-correlograms of artificial spike trains, generated by a 
Poisson process, containing four identically modulated units, each with a mean firing rate 
of 50 Hz. (c) Multi-unit cross-correlograms produced by an integrate-and-fire feedback 
circuit consistent with retinal anatomy.  Multi-unit spike trains were recorded from a fixed 
2 x 2 array of ganglion cells located at the center of each spot (intensity = -2). Poisson-
distributed spikes were added to each train to maintain a constant mean firing rate of 
50 Hz regardless of spot size.
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Figure 4. Theoretically optimal performance on a size-discrimination task. Individual 
200-ms segments of multi-unit spike-train data were obtained in response to spots of one 
of two sizes: (1) either an intermediate or small spot (top abscissa = 6.3º x 6.3º, bottom 
abscissa = 4 x 4) or (2) either a large or small spot (top abscissa = 9.8º x 9.8º, bottom 
abscissa = 6 x 6). The ordinate gives the maximum percentage of trials that could be 
classified correctly, assuming each binary possibility was equally likely a priori, based on 
the total energy in the single-trial power spectra between 75 and 95 Hz. All three data 
sets indicate that high-frequency oscillations within a small group of ganglion cells yield 
good single trial discrimination of stimulus size.
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Measurements associated with the neural currents in the brain can be 
used to diagnose epilepsy, stroke, and mental illness and to study 
brain function. One way to observe these tiny electrical currents is to 

measure the magnetic fi elds they produce outside the skull—a technique called 
magnetoencephalography (MEG).

The traditional way to monitor the brain’s electrical activity is with EEG, which 
requires gluing as many as 150 electrodes to the scalp. MEG is a noninvasive 
technique that measures the direct consequence of neuronal activity in the 
living brain. MEG, together with EEG, are the only noninvasive techniques 
of measuring brain function at millisecond time resolution or better. MEG 
measures brain currents as precisely as EEG does but without physical contact, 
making it possible to screen large numbers of patients quickly and easily. MEG 
is also insensitive to the conductivities of the scalp, skull, and brain—which can 
affect EEG measurements.

Enter the SQUID

Measuring the brain’s magnetic fi elds is not easy, however, because they are 
so weak. Just above the skull, they have strengths of 0.1 to 1 pT, less than a 
hundred millionth of the earth’s magnetic fi eld. In fact, brain fi elds can be 
measured only with the most sensitive magnetic-fi eld sensor known—the 
superconducting quantum interference device (SQUID).

A SQUID is a loop of superconducting material interrupted by one rf or two 
dc resistive regions known as Josephson junctions. When cooled to very low 
temperatures, superconductors conduct electricity without resistance. This 
lack of resistance allows a SQUID to measure the interference of quantum-
mechanical electron waves as the magnetic fl ux enclosed by the loop changes. A 
SQUID can measure magnetic fi elds as small as 1 fT.

Cohen fi rst reported detecting a magnetic signal originating from the human 
brain in 1968 using a nonsuperconducting sensor.1 Shortly thereafter, an rf 
SQUID sensor was used for the fi rst time to measure a biomagnetic signal 
originating from the human heart,2 and after only two more years, the same 
instrument was successfully used to record a human magnetic alpha rhythm 
with a satisfactory signal-to-noise ratio.3 The fi rst evoked-response magnetic 
signals associated with brain activity evoked by peripheral sensory stimulation 
measured with a SQUID sensor was reported in 1975.4

The LANL Superconducting Image Surface 
Whole-Head MEG System

The LANL SQUID team has designed and built a whole-head MEG system 
that uses 155 dc SQUIDs to provide simultaneous recordings of MEG activity 
over the entire head. The SQUIDs become superconducting when immersed in 
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Figure 1. The MEG helmet’s 
array of SQUID sensors and the 
superconducting lead shell are cooled by 
immersion in liquid helium. Each SQUID 
sensor contains a coil of superconducting 
wire that receives the brain fi elds and is 
magnetically coupled to the SQUID, which 
produces a voltage proportional to the magnetic 
fi eld received by the coil. A computer program fi eld received by the coil. A computer program 
converts the SQUID data into maps of the currents fl owing throughout the brain as a function of time.
(a) The magnetic fi eld lines that pass through the square hole at the SQUID’s center determine the phases of electron waves circulating in the SQUID’s 
superconducting region (green): the waves’ interference is proportional to the magnetic fl ux over the hole. Because superconductors have no electrical 
resistance, the interference can be measured only by interrupting the superconductor with small regions that have electrical resistance—the two 
Josephson junctions—so that voltage drops will develop across them. The voltage measured across the junctions is proportional to the magnetic fl ux 
over the SQUID’s square hole. The feedback coil magnetically couples the SQUID to the pick-up coil in the SQUID sensor. A SQUID is typically 10 to 100 µm 
on a side. (b) The colored contours show how the magnetic fi eld produced by neural brain currents (dashed arrows) changes in intensity and polarity 
over the skull’s surface. In the red region, the fi eld is most intense in a direction pointing out of the skull. In the blue region, the fi eld is most intense in a 
direction pointing into the skull.

Figure 1. The MEG helmet’s 
array of SQUID sensors and the array of SQUID sensors and the 
superconducting lead shell are cooled by superconducting lead shell are cooled by 
immersion in liquid helium. Each SQUID immersion in liquid helium. Each SQUID 
sensor contains a coil of superconducting sensor contains a coil of superconducting 
wire that receives the brain fi elds and is wire that receives the brain fi elds and is 
magnetically coupled to the SQUID, which magnetically coupled to the SQUID, which 
produces a voltage proportional to the magnetic produces a voltage proportional to the magnetic 
fi eld received by the coil. A computer program fi eld received by the coil. A computer program 
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liquid helium (4 K) contained in a large thermos. 
The helmet is positioned over a patient’s head as he 
or she sits in a chair (Figure 1).

With sophisticated computer algorithms, MEG 
data are converted into current maps that give 
researchers a real-time image of where activity is 
occurring in the brain. The LANL system responds 
to brain-current changes in less than a thousandth 
of a second, adequate for most brain-current 
studies. The SQUIDs themselves respond in about 
a millionth of a second. Using specially designed 
current coils, the LANL MEG system has achieved 
a spatial resolution of better than 0.25 mm, better 
than presently reported by any other MEG system 
(Figure 2).

Eliminating “Noise”

During a MEG measurement, the SQUIDs must 
be shielded from ambient magnetic fields, whose 
“noise” tends to swamp the brain signals. Ambient 
fields are produced mainly by the power lines in 
a building, although the earth’s magnetic field 
and even the steel in a passing car contribute. 
(Ferromagnetic materials like steel locally distort 
the earth’s field.) At the frequencies of interest in 
brain studies—a few to several hundred hertz—the 
ambient fields must typically be reduced by a 
factor of 10,000 to 100,000. The helmet’s SQUIDs 
are partially shielded from ambient fields by a 
thick, hemispherical shell of lead, which becomes 
superconducting at liquid-helium temperatures. 
Because superconductors perfectly reflect magnetic 
fields, the shell reduces ambient fields to as little 
as one thousandth of their initial strengths. The 
shielding is not perfect because the shell does not 
completely enclose the head. The SQUIDs near the 
shell’s crown are better shielded than those near its 
brim. The shell also reflects the brain’s magnetic 
fields back to the SQUID array, increasing the 
helmet’s sensitivity.

Usually, ambient fields are reduced by taking MEG 
data in a specially shielded room built with very 
expensive materials. The superconducting shell 
effectively blocks magnetic fields from zero to 
several thousand hertz. Thus, measurements made 
with the shell require only a “low-end” shielded 
room, which costs about $100,000—one-fifth that 
of conventional shielded rooms.

The team has recently added external SQUIDs to 
the helmet that further reduce the effects of ambient 
fields. The external SQUIDs measure these fields 

at several points just outside the superconducting 
shell, and a computer program then subtracts 
the fields from the brain-field data to reduce the 
ambient fields’ effects by another factor of 1,000—at 
all frequencies.

Applications of the MEG/SQUID 
Technologies

Diagnosing epileptic seizures. For 20% of epilepsy 
patients, drugs cannot adequately control seizures, 
and surgically removing the brain tissue where the 
seizures originate—the epileptigenic tissue—is the 
only option. But the surgeon must know precisely 
where the aberrant tissue is to avoid removing 
nearby tissue required for motor control, sense 
perception, language, and memory. In addition, 
by pinpointing how the brain responds to visual, 
auditory, tactile, or other stimuli, MEG can help 

Figure 2. (a) A computer program converts the raw MEG data into maps of the brain’s 
electrical activity as a function of time. These maps can be used to diagnose epilepsy, 
stroke, and mental disease and to study brain function. (b) The raw data obtained from 
the 155 SQUID sensors in the MEG helmet. The red waveforms were obtained with the 
patient’s eyes closed. The blue waveforms were obtained as the patient observed a 
flashing light. (c) The superconducting lead shell. The gray mesh defines the shell’s contour. 
SQUID sensors are attached to the blue surface. At liquid-helium temperatures, the lead 
shell becomes superconducting and is therefore an excellent magnetic shield. Because a 
superconductor perfectly reflects magnetic fields at all frequencies, the shell helps shield 
the underlying SQUID array from ambient magnetic fields. The shell also shields SQUIDs 
placed outside the shell from the brain’s magnetic fields. These external SQUIDs provide 
data used to help cancel the effects of ambient fields. The superconducting shell and 
external-field-cancellation method greatly reduce the cost of the magnetically shielded 
room required for MEG measurements, making them more affordable.
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assess the effects of possible collateral damage 
during surgery.

A brain scan can precisely locate the epileptigenic 
tissue if the imaging method has high spatial 
resolution and is fast enough to detect the seizure 
discharge or the electrical activity that precedes a 
seizure, which also originates in the epileptigenic 
tissue. Although seizures occur sporadically, the 
electrical activity associated with them occurs 
continually.

Peering into the brain columns. The SQUID 
team has also developed MicroMEG—using a 
centimeter-long linear array of SQUIDs with a 
potential spatial resolution of tens of micrometers. 
Made of “high-temperature” superconductors, 
the array’s twelve SQUIDs are cooled by liquid 
nitrogen (77 K) instead of liquid helium (4 K). The 
MicroMEG array requires less thermal insulation 
than arrays cooled with liquid helium. Thus, the 
MicroMEG SQUIDs can be brought within half 
a millimeter of the tissue under study, allowing 
extremely high-resolution measurements.

MicroMEG will be used to probe the electrical 
activity of as few as a few thousand to tens of 
thousands neurons in one of the brain’s cortical 
columns. The columns are believed to operate in 
parallel, like the hundreds of microprocessors in 
a supercomputer that work in parallel to achieve 
high overall speed. Such studies will improve our 
understanding of brain function.

Measuring a baby’s heartbeat. A variant of MEG 
called fetal magnetocardiography (FMCG) can be 
used to diagnose and treat fetal heart conditions. In 
fact, FMCG is the only way to measure the electrical 
signals produced by the heartbeat of a baby in 
the womb. And only the heart’s electrical signals 
contain the detailed timing information required to 
diagnose and treat fetal arrhythmias. Stethoscopes 
and ultrasound cannot provide this information 
because they use sound. Nor is electrocardiography 
(ECG) useful, because it directly measures the 

electricity produced by the heart through electrodes 
taped to the body. However, the baby is electrically 
insulated from the mother.

Around the twentieth week, the baby’s sebaceous 
glands secrete a waxy, white substance called vernix 
caseosa, which covers the baby’s skin to protect it 
from amniotic fluid in the womb. Because the vernix 
is electrically insulating, electrical signals from 
the baby’s heartbeat cannot pass into the mother’s 
body for measurement on her skin. However, the 
magnetic fields produced by the baby’s heartbeat 
pass easily through the vernix and can be measured 
with FMCG. Although in principle ECG could be 
used before the vernix forms, the fetal heart is then 
too small to produce a detectable electrical signal. 
Unlike other medical diagnostic techniques, FMCG 
poses no risk to the unborn baby or the mother 
because it merely receives the magnetic signals sent 
out by the baby’s heart.
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Group P-21 efforts in single-molecule detection and spectroscopy focus on 
the development of novel methods for the ultra-sensitive detection and 

analysis of biological molecules and their applications to molecular biology 
and medical diagnosis. Recent developments include the implementation of 
a technique for the rapid, direct detection of specific nucleic acid sequences 
in biological samples without the need for enzymatic amplification. Our 
approach in these experiments is based on detecting the presence of a specific 
nucleic acid sequence of bacterial, human, plant, or other origin. The nucleic 
acid sequence may be a DNA or RNA sequence and may be characteristic 
of a specific taxonomic group, a specific physiological function, or a specific 
genetic trait. The method we use consists of synthesizing a highly fluorescent 
nucleic acid reporter molecule using a sequence of the target as a template. A 
short oligonucleotide primer that is complementary to the target is added to 
the sample along with a suitable polymerase and free nucleotides. One of these 
oligonucleotides is partially labeled with a fluorophore. If the target is present 
in the sample, the primer binds to it, and the polymerase will incorporate 
the labeled and unlabeled nucleotides, thus reconstructing the target’s 
complementary sequence (Figure 1). The sample is then pumped through 
the capillary cell of a single-molecule detector. Detection of the reporter 
signifies the presence of the target being sought. We have applied this method 
to the detection of specific sequences of DNA from a variety of sources. Most 
notably, we have demonstrated the detection of DNA from B. anthracis at 
trace concentrations, and in the presence of large amounts of unrelated DNA. 
B. anthracis, the causing agent of anthrax disease, is the weapon of choice in 
biological warfare. Our recent experiments provide vital research and insight 
into the intricate workings of specific biological pathogens and supports LANL’s 
defense mission.

Figure 1. Schematic representation of the polymerase 
extension reaction for fluorescently labeled reporter 
molecule synthesis.

Single-Molecule Detection and 
Characterization

A. Castro, O.C. Marina, F. Martinez (P-21)
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Proteins are the smallest functional unit in living cells. Knowing the 
structures of proteins is the key to understanding the mechanistic and 

kinetic modes of these molecular nanomachines. We are pursuing high-
throughput x-ray-crystallography technology using high-brilliance synchrotron 
x-ray beam lines at the Advanced Light Source at Lawrence Berkeley National 
Laboratory to determine the three-dimensional atomic structures of proteins 
on a genomic scale. We are one of the integral components of the LANL 
Tuberculosis Structural Genomics Consortium (TBSGC), one of the ten 
centers funded by the NIH Protein Structure Initiative to determine a large 
quantity of novel protein structures in a relatively short amount of time. With 
the researchers in B Division and LLNL, we established an integrated research 
resource encompassing the full spectrum of modern structural biology. This 
includes gene cloning, protein overexpression (B Division), crystallization 
(LLNL), and x-ray data collection and structure determination (P-21, see 
Figure 2). Working as a team, we are developing scalable technologies to 
increase the efficiency and reduce the cost to map each protein structure.

Along with the structural-genomics efforts, we are also developing methods in 
computational biology to combine protein structure with sequence information 
to infer their molecular functions. One of the big findings from the completion 
of genome projects are that over 30%–60% of the genes discovered in most 
of the organisms have no known functions in humans based on sequence 
homology alone. These genes and their functions may largely represent the part 
of biology yet to be discovered. The three-dimensional structures (the shapes) 
of proteins, have been shown to provide unique information in predicting 
protein functions. We are working on computational methods to extract 
structural information to predict protein functions at a much deeper level. 
From protein sequence and structure to protein function, we are laying out the 
groundwork to uncover the secret of life.

Figure 2. LeuA protein of Mycobacterium tuberculosis 
(TB), a protein central to Leucine biosynthesis in TB 
and a potential drug target for TB anti-TB treatment. 
The structure was determined by Li-Wei Hung (P-21) in 
collaboration of one of the TBSGC consortium members, 
Professor Ted Baker of the University of Auckland, New 
Zealand.

Protein Structure, Dynamics, and 
Function

L.-W. Hung, J. Berendzen, L. Flaks (P-21), T.C. Terwilliger, 
G.S. Waldo, C.-Y. Kim (B-2), E. Bursey, M. Yu, G. Rajagopalan 
(Lawrence Berkeley National Laboratory), B. Rupp, 
B. Segelke (Lawrence Livermore National Laboratory), 
D. Eisenberg (University of California, Los Angeles), 
T. Alber (University of California, Berkeley), J. Sacchettini 
(Texas A&M)
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